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ON FRICTION RESISTANCE TO MOTION
OF AN AEROSTATIC CARRIER WITH ELASTIC DIAPHRAGM

V.G. DVORIANINOV, E.I. SVESHNIKOVA and N.R. SIBGATULLIN

The motion of an aerostatic carrier smooth elastic diaphragm on a rough supporting
surface is considered. A semi-empirical dependence of the friction coefficient on
the supporting surface roughness, air flow rate, load, carrier size, and on the
diaphragm material elastic properties is obtained on the basis of theoretical analy-
sis of the effect of the diaphragm flexural rigidity on the contact section size,
and of experimental investigation results.

Aerostatic carriers (ASC) used for transporting loads /1— 5/ have as their basic compon-
ent an elastic diaphragm that adapts itself to local unevenness of the supporting surface,
maintaining a constant gap between the latter and the diaphragm, thus preventing excessive
escape of air from the air cushion. But owing to the gap smallness (0.03-0.1lmm), the diaphragm
touches individual projections of the microcontour of the supporting surface, which results in
the generation of dry friction during movement of the diaphragm. The section subjected to
friction is of the order of the diaphragm thickness. To calculate the length of that section
it is necessary to take into account the diaphragm flexural rigidity. Experiments revealed a
complex dependence of the resistance coefficient on load, air flow rate, and ASC parameters.

Note that such investigations are necessary not only in engineering calculations of the
traction force but, also, in the investigation of stability of equipment carried on the air
cushion over rough surfaces.

1. Asymptotic analysis of viscous flow in a layer with elastic boundary
taking into account flexural rigidity. Consider the K&rmin equations for large de-
flections of round plates
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where shear forces are assumed zero, w and 6 are, respectively, the vertical deflection and
thickness of the diaphragm, E is the Young modulus, D is the flexural rigidity, Ap is the
difference of pressures on opposite sides of the diaphragm, N, is the radial tension, r is
the distance from the axis of symmetry z (Fig.l), and a and b are the radii of the inner and
outer diaphragm rigid seals, respectively.
The diaphragm cross section drawn through its vertical axis of symmetry is shown in Fig.
1, where p, denotes atmospheric pressure, p, and p, denote pressure in the baloon and in the
air cushion, respectively, 7, is the distance of minimal gap from the axis of symmetry, h, is the
minimal gap size, and hk (r) defines the diaphragm elevation realative to the supporting surface.
Equations (1.l1) must be supplemented by the Reynolds equation that Hefines the flow of
a viscous fluid in the minimal gap zone

oplor = 6uQ/(nrh3) (1.2)

where p is the pressure, p is the dynamic viscosity of gas (for air u = 1.8-107¢ kg/mzs), Q is
the volume rate of air flow, and h is the vertical distance of a diaphragm point from the sup-
porting surface.
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In the lubrication zone close to the diaphragm maximum deflection tension varies insigni-
ficantly, and the viscous layer size is small in comparison with the distance r, radius of the
diaphragm maximum deflection from the 2z axis. BHence. as in /4/, we substitute in Eqgs.(1.1)
and (1.2) Ny for N,and r, for r, where N, is the tension at the maximum deflection point.

Since h + w = const, we can eliminate pressure

Z) from Egs.(1.1) and (1.2).
| Passing to dimensionless variables xZ o
e |2 (r —roe)/A, y = h/h,, where h, is the minimum gap

- o T ~— between the diaphragm and the supporting surface
+ £ at the point of maximum diaphragm deflection
L___ff,._» < A3 == nryNoho*/(6nQ), we obtain for the deflection
- b ] an equation of the form
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Parameter J defines the length of the section of viscous force action, in which there is
a sharp pressure drop /4,5/. Besides this characteristic length there is the characteristic
length I= 8Y ES/N, of the section subjected to bending moments. The coefficient o in Eq.
(1.3) is the ratio a = l/A of these two lengths.

The variable z plays the part of internal variable in the viscous layer. In the internal
expansion, where the relative variation of tension AN,/N, and of radius Ary/r, inside the
viscous layer are small parameters, part of the boundary conditions is defined asymptotically
with z — 4 o and z — — o0. As the boundary conditions we take that pressure in the cushion
approaches p, as z > — o0, and as x — -+ oo it approaches the atmospheric pressure p,/4/.

In Eq.(1.1) Ap = — (p, — p), where p, is the pressure in the balloon (above the diaphragm)
and p is the current pressure in the cushion (under the diaphragm). On the basis of the first
of Egs.(1.1) we have

. o dly dy\ PP,
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At z =0 the following conditions apply:
y0) =1,y (0 =0 (1.5)

When |r —rs|>1 the effect of bending moments is exponentially small. Hence for z —
+o0 we use the additional condition

T — o0,  diyldz* —0 (1.6)

implying that the exponentially increasing solutions must vanish.

Since Eq.(1.3) is of the fifth order and the number of conditions in (1.4}, (1.5), and
(L.6) is six, hence for any arbitrary values of the right-hand sides of 6, and 60, in (1.4)
these conditions are incompatible, except when 6; and 8, have well-defined values that depend
only on the ration (p, — pJ)/(py — Pa) = ¢ and coefficient «, which enables us to establishthe
dependence of the minimal gap on the parameters of ASC.

Integrating Eqg.(1.3) and using condition (1.4) for z - 4 oo, we obtain

ﬁazy<4>+y~:31_gi (L.7)

3
x

Similarly, from condition (1.4) with z — —oco follows

x
1.8
— a2y 4y =8, + S _(y{t_ oo

Compatibility of Egs.(1.7) and (1.8) requires the fulfillment of the equality

I led
S 7ﬁ=91»—62 (1.9)
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which is the missing condition needed for the determination of constants 0; and @;, since

in conformity with (1.4) their ratio is assumed known.
Rejecting in (1.7) and (1.8) the exponentially increasing solutions as z = --o0, we obtain

o

Y = _é_ {(91 +0y) — g %(1 — el-t/w) 4 S _‘:_j (1— e(r-x)/q,)} (1.10)
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Differentiating (1.10) we obtain for y

2a
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Let us consider the cases of a >1 and o <€ 1 separately.
When a<1 for the determination of integrals in the right-hand side of (1.11) we apply

a - e A -

Watson's lemma /6/, according to which the equality

§ etrmptydta 3 1o (©)am (— 1)
0 n=(

is valid and accurate to exponentially small terms. Its right-hand side is a Maclaurin ex-
pangsion of function f(f\ within its radius of convergence. Hence from (l.11) within terms o

order O (a*) we have

+h

y" =y - a’dyda? (1.12)

The dependence Y = (p, — p) A¥f(N4h,) obtained with flexural rigidity taken into considera-
tion is shown in Fig.2 by the dash line, and the solid line corresponds to calculations with-
out allowance for flexural rigidity. The use of bending stresses as the small parameter in
the hydroelastic problem shows that in the external part of the viscous layer the theoretical-
ly determined pressure is lower than the atmospheric.

This fact, established experimentally, was earlier explained only by the effect of forces

of the stream inertia /1/. The characteristic length of the section in which friction takes

place is of the order of A. On the basis of numerical calcul-

ations for [ <€) it is possible to assume that the character-
istic length of contact section is equal !+ A, with 0; varying

EE sl o Tt arera 2 Py o~
in the interval 1.8-=2 for small q .

Consider now the case of & >>1 when the characteristic
length A of pressure drop section is considerably small than
length [I. It is possible to assume in the first approximation
the pressure to be piecewise constant. Then from (1.7) and
(1.8) follows that

o 8, when z>0
—alyW |y = 8, when z<0 (1.13)

The condition of continuity of y” and y" implies that at
z = 0 we have

Fig.2 x>0, y" = 0, — (6, — 0,) e==/%/2 (1.14)
<< 0, y" =0, (0, — 0,) exla/2

from which with condition (1.6) and z = 0 follows that

>0, y=1 - Y82 — ¥, (6, — 8,) (ax — o + aZe¥/%) (1.15)
20, y=1 -+ 0,22 + Yy (B, — 0;) (— 0z — af + atewa) (1.16)
It remains to determine 0, and 6, using (1.9). The integral in it is calculated asymp—

totically. For this we divide the integration region (— oo, + %0) in three parts, viz. (—oo,
—a), (—a, @), and (a, o). Experimental data enable us to assume that g =040, < 1.
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When integrating from — oo to @ in the interval (1.16), we reject the exponent and set
0, =0 . In region (—a, a) we expand exponents in formulas (1.15) and (1.16) and take into
account the firsti three terms. The integral from o to oo is of order a™® and is neglected.
For the determination of 0, we finally obtain the equation

Y1 — q/2) + (0,2)7 = 0, (1 — q)

from which follows within terms of order ¢® and 1/a®that

/3 2 3 s
el=e,(a,q):(—;n+a—v—5_;+7nq)’ (1.17)

Calculations by formula (1.17) differ insignificantly from numerical solutions of Eq. (1.9)
in which expressions (1.15) and (1.16) have been substituted for y.
Using formula (1.4) for 8; for the minimal gap h, we obtain

1 6uQ V[ BN, \
ho*(m%) ( ph-pﬂ) (1.18)

Thus the allowance for flexural rigidity affects only slightly the minimal gap magnitude.
But the characteristic length of the section along which dry friction of the diaphragm on the
supporting surface develops, is determined by the square root of the ratio of flexural rigid-
ity to tension at the minimal gap point under the condition that [ ZzA.

2. Determination of the friction coefficient dependence on parameters of
ASC in motion. We denote by 7 the coefficient of friction per unit area of contacting sur-
faces. This coefficient depends only on the ratio of the local gap * to the characteristic
dimension of a projection of the floor rough surface. The /traction/ resistance force per
unit area is thus equal (p, — p)x. Integrating this expression over the whole surface of the
floor and diaphragm contact, taking into account that !« r, we obtain for the traction force

the expression
ekl

2nrg S (p,— P)xdr
ro—1/2

The coefficient of friction k for the carrier as a whole is equal to the ratio of the
tractive effort to the aerostatic carrier weight ¢ (including the paylod)

k= 2nr67t S (B, — pYyxdr ~ 2nrgG7 (p, — pa)yl = 20x4!ro (2.1)

where %, is the value of y when i = ky(h, is the minimal gap).

For the determination of the friction coefficient in (2.1) it is necessary to deterxrmine
the dependence of %, on the roughness of the supporting surface. Since theoretical determin-
ation of that dependence is difficult, it was evaluated on the basis of experimental data. In-
vestigations were carried out on equipment consisting of three and four aerostatic carriers.
Dimension &, i.e. the radius of the diaphragm external seal, was from 0.18 to 0.4 m. The
over-all load on the equipment was from O.7 to 30 ton, and the air volume flow rate was varied
from 0.3 to 6 m°/min. The supporting surface roughness measured by
special equipment was R, == 0.02—0.08 mm.

WX - : :
™ % Zé The dependence of %, on hy/R, is shown in Fig.3, where the small
° a3 circles, triangles, and squares represent the values of ¥, determined

- 1.4 " experimentally for ASC of the following sizes &= 0.182,0.308, 046 m,
> respectively.

-1.6 S Note the grouping of experimental points along the straight line
a\e defined by the equation

-2 v Ig xo = a — wlg (ho/R); a = —2, % =35 (2.2)

v
-2.6 7\ where R, is the floor roughness.

04 -02 0 1gh, /R, Parameter 1y, determined by formula (2.2) based on experimental

) data depends only on the ratio h/R,, and is independent of external
Fig.3 load, air flow rate, external seal radius, and of the diaphragm thick-
ness and material.
Using expression (2.1) for the friction coefficient, the empirical formula {2.2), the
previously adduced formula ! = 8VES8/N,, and the expression N,=nVGEGH, where 0.1 < n<0.15,
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from /1/, for the determination of the friction coefficient we obtain

s (Ebb '/I(Rz )”
k=sr—0 G ) T

For the determination of the ratio #,/R, we use formula (1.18) written in the form

By ™ (pEéQ )/( G ).,,

R 'R\ @& E5%

z

The coefficients s and t are within the limits 0.41<s<0.13, 2.7 < t< 3, respectively. For

the determination of r, the data in /5/ are to be used.
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