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ON FRICTION RESISTANCE TO MOTION 
OF AN AEROSTATIC CARRIER WITH ELASTIC DIAPHRAGM* 

V.G. DVORIANINOV, E.I. SVESHNIKOVA and N.R. SIBGATULLIN 

The motion of an aerostatic carrier smooth elastic diaphragm on a rough supporting 
surface is considered. A semi-empirical dependence of the friction coefficient on 
the supporting surface roughness, air flow rate, load, carrier size, and on the 
diaphragm material elastic properties is obtained on the basis of theoreticalanaly- 
sis of the effect of the diaphragm flexural rigidity on the contact section size, 
and of experimental investigation results. 

&ero=tatic carriers (ASC) used for transporting loads /l-55/ have as their basic compon- 
ent an elastic diaphragm that adapts itself to local unevenness of the supporting surface, 
maintaining a constant gap between the latter and the diaphragm, thus preventing excessive 
escape of air from the air cushion. But owing to the gap smallness (0.03-O.lmm), thediaphragm 
touches individual projections of the microcontour of the supporting surface, which resultsin 
the generation of dry friction during movement of the diaphragm. The section subjected to 
friction is of the order of the diaphragm thickness. To calculate the length of that section 
it is necessary to take into account the diaphragm flexural rigidity. Experiments revealed a 
complex dependence of the resistance coefficient on load, air flow rate, and ASC parameters. 

Note that such investigations are necessary not only in engineering calculations of the 
traction force but, also, in the investigation of stability of equipment carried on the air 
cushion over rough surfaces. 

1. Asymptotic analysis of viscous flow in a layer with elastic boundary 
taking into account flexural rigidity. Consider the K&m& equations for large de- 
flections of round plates 

(1.1) 

where shear forces are assumed zero, w and 6 are, respectively, the vertical deflection and 
thickness of the diaphragm, E is the Young modulus, lZJ is the flexural rigidity, Ap is the 
difference of pressures on opposite sides of the diaphragm, N,is the radial tension, r is 
the distance from the axis of symmetry z (Fig.l), and a and b are the radii of the inner and 
outer diaphragm rigid seals, respectively. 

The diaphragm cross section drawn through its vertical axis of symmetry is shown in Fig. 
1, where pn denotes atmospheric pressure, pb and pc denote pressure in the baloon and in the 
air cushion, respectively, r0 isthedistanceofminimalgapfromthe axisofsymmetry, h, is the 
minimal gap size, and h(r) definesthe diaphragm elevation realativetothesupporting surface. 

Equations (1.1) must be supplemented by the Reynolds equation that Befines the flow of 
a viscous fluid in the minimal gap zone 

aplar = 6pQl(nrhS) (1.2) 

where p is the pressure, pis the dynamic viscosity of gas (for air p = 1.8.1O-8 kg/m2s), Q is 
the volume rate of air flow, and h is the vertical distance of a diaphragm point from the sup- 
porting surface. 
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In the lubrication zone close to the diaphragm maximum deflection tension varies insigni- 

ficantly, and the viscous layer size is small in comparison with the distance r0 radius of the 

diaphragm maximum deflection from the z axis. Hence. as in /4/, we substitute in Eqs.cl.1) 
and (1.2) N, for N,and I^" for r, where N, is the tension at the maximum deflection point. 

Since h + u' = const, we can eliminate pressure 

;Fgp$+ 

Passing to dimensionless variables 

~~~~~~~~~~~~~~~~o~h~~~~~c~~~ 

between the diaphragm and the supportingsurface 

at the point of maximum diaphragm deflection 

Parameter h defines the length of the section of viscous force action, in which there is 

a sharp pressure drop /4,5/. Besides this characteristic length there is the characteristic 

length I= 6)/E6iN, of the section subjected to bending moments. The coefficient CL in Eq. 

(1.3) is the ratio a = l/h of these two lengths. 

The variable X plays the part of internal variable in the viscous layer. In the internal 

expansion, where the relative variation of tension ANJN, and of radius Ar,lr, inside the 

viscous layer are small parameters, part of the boundary conditions is defined asymptotically 

with z -, + 00 and X--j-00. As the boundary conditions we take that pressure in the cushion 

approaches pc as x--t--, and as x--t + OCI it approaches the atmospheric pressure pu/4/. 

In Eq.cl.1) Ap = -(PI, -p), where pb is the pressure intheballoon (above the diaphragm) 

and p is the current pressure inthe cushion (under the diaphragm). On the basis of the first 

of Eqs.cl.1) we have 
lim (1.4) 
z--r--m 

At X = 0 the following conditions apply: 

y (0) = 1, y’ (0) = 0 (1.5) 

When Ir -I'~ I>L the effect of bending moments is exponentially small. Hence for X+ 

&cc we use the additional condition 

x-+fm, d’yldx4 -_, 0 (1.6) 

implying that the exponentially increasing solutions must vanish. 

Since Eq.(1.3) is of the fifth order and the number of conditions in (l-4), (1.5), and 

(1.6) is six, hence for any arbitrary values of the right-hand sides of 8, and 8, in (1.4) 

these conditions are incompatible, except when 8, and e2 have well-defined values that depend 

only on the ration (pb- pJ/(pb-pa)= q and coefficient a, which enables us to establishthe 

dependence of the minimal gap on the parameters of ASC. 

Integrating Eq.cl.3) and using condition (1.4) for X--t + 00, we obtain 

- &p) + y” = el- I+ 
Similarly, from condi tion (1.4) with X---CO follows 

(1.7) 

(1.8) 

Compatibility of Eqs.(l.7) and (1.8) requires the fulfillment of the equality 

(1.9) 
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which is the missing condition needed for the determination of constants 0, and l$, since 
in conformity with (1.4) their ratio is assumed known. 

Rejecting in (1.7) and (1.8) the exponentially increasing solutions as x=-&o, weobtain 

Y” = + [Pl + 0,) - 1 f (1 - d-la) + $ $ (1 _ e(‘-~wa)) 

Differentiating (1.10) we obtain for y"l 

(1.10) 

(1.11) 

Let us consider the cases of a> 1 and a < 1 separately. 
When a<1 for the determination of integrals in the right-hand side of (1.11) we apply 

Watson's lemma/6/, according to which the equality 

{ e-t/af (t) dt 
" 

zniO f@) (0)an+l(- 1)" 

is valid and accurate to exponentially small terms. Its right-hand side is a Maclaurin ex- 
pansion of function f(t) within its radius of convergence. Hence from (1.11) within terms of 
order 0(a4) we have 

Y P 
IU = + a2d2y-3/dxl (1.12) 

The dependence Y = (pb- p)hy(N,h,) obtained with flexural rigidity taken into considera- 
tion is shown in Fig.2 by the dash line, and the solid line corresponds to calculations with- 
out allowance for flexural rigidity. The use of bending stresses as the small parameter in 
the hydroelasticproblem shows that in the external part of the viscous layer the theoretical- 
ly determined pressure is lower than the atmospheric. 

This fact, established experimentally, was earlier explained only by the effectof forces 
of the stream inertia /l/. The characteristic length of the section in which friction takes 

place is of the order of h. On the basis of numerical calcul- 
ations for l<h it is possible to assume that the character- 
istic length of contact section is equal Z+h, with 8, varying 
in the interval 1.8-2 for small 4. 

Consider now the case of a >I when the characteristic 
length h of pressure drop section is considerably small than 
length 1. It is possible to assume in the first approximation 
the pressure to be piecewise constant. Then from (1.7) and 
(1.8) follows that 

- ,ZyC”, + y” = 81 when x>O 

0, when x<O (1.13) 

t 5 I 
-2 0 2 

The condition of continuity of y'and y"'implies that at 
z = 0 we have 

Fig.2 I > 0, y" = e1 - (e, - 0,) e-+/2 

z< 0, y" = 8, i- (0, - 0,) e+V2 

(1.14) 

from which with condition (1.6) and x = 0 follows that 

s > 0, y = 1 ~I- l/,eIx2 - Ii2 (0, - e,) (ax - a2 + a2dcL) (1.15) 

5< 0, y = 1 + 1/,B,t2 + I/, (6, - 6,) (-ax - a2 + a2eXla) (1.16) 

It remains to determine 0, and 8, using (1.9). 
totically. 

The integral in it is calculated asymp- 

-a),(-a,a), 
For this we divide the integration region (- 00, f m) in three parts, viz. (--, 
and (a, CS). Experimental data enable us to assume that qzedel.ql. 
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When integrating from - 00 to a in the interval (1.16), we reject the exponent and set 
8,=0. In region (-a,a) we expand exponents in formulas (1.15) and (1.16) and take into 
account the firs; three terms. The integral from a to 00 is of order rY5 and is neglected. 
For the determination of 0, we finally obtain the equation 

3/&-'/‘(1 - $2) + (Qz)-' = 0, (1 - Q) 

from which follows within terms of order 4' and 1'02that 

e1= 81 (a, q) = ‘4 3-l + 
t 

-& + + nq)“’ (1.17) 

Calculations by formula (1.17) differ insignificantly from numerical solutionsofEq.(1.9) 
in which expressions (1.15) and (1.16) have been substituted for y. 

Using formula (1.4) for 8, for the minimal gap ho we obtain 

(1.18) 

Thus the allowance for flexural rigidity affects only slightly the minimal gap magnitude. 
But the characteristic length of the section along which dry friction of the diaphragm on the 
supporting surface develops, is determined by the square root of the ratio of flexural rigid- 
ity to tension at the minimal gap point under the condition that 121. 

2. Determination of the friction coefficient dependence on parameters of 
ASC in motion. We denote by x the coefficient of friction per unit area of contacting sur- 
faces. This coefficient depends only on the ratio of the local gap h to the characteristic 
dimension of a projection of the floor rough surface. The /traction/ resistance force per 
unit area is thus equal (Pb-P)r. Integrating this expression over the whole surface of the 
floor and diaphragm contact, taking into account that 14 70, we obtain for the traction force 
the expression 

r,,+i/-? 
2nro s (P,-PP)X+ 

To-l/z 

The coefficient of friction li for the carrier as a whole is equal to the ratio of the 
tractive effort to the aerostatic carrier weight (; (including the paylod) 

k = 2nr,C-' \ (p,, - p)xdr - Bnr,,G-’ (p,, - .&,)x1 m= =X&J? (2.1) 

where x0 is the value of y. when II h,@, is the minimal gap). 
For the determination of the friction coefficient in (2.1) it is necessary to determine 

the dependence of x0 on the roughness of the supporting surface. Since theoretical determin- 

ation of that dependence is difficult, it was evaluated on the basis of experimental data. In- 
vestigations were carried out on equipment consisting of three and four aerostatic carriers. 
Dimension b, i.e. the radius of the diaphragm external seal, was from 0.18 to 0.4 m. The 
over-all load on the equipment was from 0.7 to 30 ton, and the air volume flow ratewasvaried 

from 0.3 to 6 m3/min. The supporting surface roughness measured by 
special equipment was R, -= O.OZ--0.08 mm. 

The dependence of x0 on h&R, is shown in Fig.3, where the Small 
circles, triangles, and squares represent the values of xo determined 
experimentally for ASC of the following sizes b = 0.182,0.308 , 0.46 m, 
respectively. 

Note the grouping of experimental points along the straight line 

defined by the equation 

lg x0 = (I - xlg(h,il!,); a = -2, x = 3.5 (2.2) 

-2.6 where RI is the floor roughness. 
z Parameter x0 determined by formula (2.2) based on experimental 

data depends only on the ratio h&R,, and is independent of external 
Fig.3 load, air flow rate, external seal radius, and of the diaphragm thick- 

ness and material. 
Using expression (2.1) for the friction coefficient, the empirical formula (2.2), the 

-. 
previously adduced formula z = 8vmo, and the expression N,=nS v/G’“E8/b”, where 0.11 c: n < 0.15, 
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from /l/, for the determination of the friction coefficient we obtain 

k=s+(+y($)X 

For the determination of the ratio ho/R, we use formula (1.18) written in the form 

h, __=t+(@&"(&)"' 
2 

The coefficients s and t are within the limits O.il<~<O.13, 2.7 < t<3, respectively. For 
the determination of r0 the data in /5/ are to be used. 
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